direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×C5⋊C8, C23.4F5, Dic5.14C23, (C2×C10)⋊2C8, C10⋊2(C2×C8), C5⋊2(C22×C8), C2.3(C22×F5), (C22×C10).5C4, C22.19(C2×F5), C10.11(C22×C4), (C2×Dic5).13C4, Dic5.18(C2×C4), (C22×Dic5).8C2, (C2×Dic5).57C22, (C2×C10).19(C2×C4), SmallGroup(160,210)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 — C22×C5⋊C8 |
C5 — C22×C5⋊C8 |
Generators and relations for C22×C5⋊C8
G = < a,b,c,d | a2=b2=c5=d8=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 164 in 76 conjugacy classes, 54 normal (9 characteristic)
C1, C2, C2, C4, C22, C5, C8, C2×C4, C23, C10, C10, C2×C8, C22×C4, Dic5, Dic5, C2×C10, C22×C8, C5⋊C8, C2×Dic5, C22×C10, C2×C5⋊C8, C22×Dic5, C22×C5⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, C22×C4, F5, C22×C8, C5⋊C8, C2×F5, C2×C5⋊C8, C22×F5, C22×C5⋊C8
(1 104)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)(17 144)(18 137)(19 138)(20 139)(21 140)(22 141)(23 142)(24 143)(33 108)(34 109)(35 110)(36 111)(37 112)(38 105)(39 106)(40 107)(41 125)(42 126)(43 127)(44 128)(45 121)(46 122)(47 123)(48 124)(49 78)(50 79)(51 80)(52 73)(53 74)(54 75)(55 76)(56 77)(57 136)(58 129)(59 130)(60 131)(61 132)(62 133)(63 134)(64 135)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 145)(81 159)(82 160)(83 153)(84 154)(85 155)(86 156)(87 157)(88 158)(89 114)(90 115)(91 116)(92 117)(93 118)(94 119)(95 120)(96 113)
(1 48)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 70)(10 71)(11 72)(12 65)(13 66)(14 67)(15 68)(16 69)(17 154)(18 155)(19 156)(20 157)(21 158)(22 159)(23 160)(24 153)(25 146)(26 147)(27 148)(28 149)(29 150)(30 151)(31 152)(32 145)(33 52)(34 53)(35 54)(36 55)(37 56)(38 49)(39 50)(40 51)(57 96)(58 89)(59 90)(60 91)(61 92)(62 93)(63 94)(64 95)(73 108)(74 109)(75 110)(76 111)(77 112)(78 105)(79 106)(80 107)(81 141)(82 142)(83 143)(84 144)(85 137)(86 138)(87 139)(88 140)(97 125)(98 126)(99 127)(100 128)(101 121)(102 122)(103 123)(104 124)(113 136)(114 129)(115 130)(116 131)(117 132)(118 133)(119 134)(120 135)
(1 53 83 151 59)(2 152 54 60 84)(3 61 145 85 55)(4 86 62 56 146)(5 49 87 147 63)(6 148 50 64 88)(7 57 149 81 51)(8 82 58 52 150)(9 115 124 109 24)(10 110 116 17 125)(11 18 111 126 117)(12 127 19 118 112)(13 119 128 105 20)(14 106 120 21 121)(15 22 107 122 113)(16 123 23 114 108)(25 43 138 93 37)(26 94 44 38 139)(27 39 95 140 45)(28 141 40 46 96)(29 47 142 89 33)(30 90 48 34 143)(31 35 91 144 41)(32 137 36 42 92)(65 99 156 133 77)(66 134 100 78 157)(67 79 135 158 101)(68 159 80 102 136)(69 103 160 129 73)(70 130 104 74 153)(71 75 131 154 97)(72 155 76 98 132)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,104)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,144)(18,137)(19,138)(20,139)(21,140)(22,141)(23,142)(24,143)(33,108)(34,109)(35,110)(36,111)(37,112)(38,105)(39,106)(40,107)(41,125)(42,126)(43,127)(44,128)(45,121)(46,122)(47,123)(48,124)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77)(57,136)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,145)(81,159)(82,160)(83,153)(84,154)(85,155)(86,156)(87,157)(88,158)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,113), (1,48)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,70)(10,71)(11,72)(12,65)(13,66)(14,67)(15,68)(16,69)(17,154)(18,155)(19,156)(20,157)(21,158)(22,159)(23,160)(24,153)(25,146)(26,147)(27,148)(28,149)(29,150)(30,151)(31,152)(32,145)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(57,96)(58,89)(59,90)(60,91)(61,92)(62,93)(63,94)(64,95)(73,108)(74,109)(75,110)(76,111)(77,112)(78,105)(79,106)(80,107)(81,141)(82,142)(83,143)(84,144)(85,137)(86,138)(87,139)(88,140)(97,125)(98,126)(99,127)(100,128)(101,121)(102,122)(103,123)(104,124)(113,136)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135), (1,53,83,151,59)(2,152,54,60,84)(3,61,145,85,55)(4,86,62,56,146)(5,49,87,147,63)(6,148,50,64,88)(7,57,149,81,51)(8,82,58,52,150)(9,115,124,109,24)(10,110,116,17,125)(11,18,111,126,117)(12,127,19,118,112)(13,119,128,105,20)(14,106,120,21,121)(15,22,107,122,113)(16,123,23,114,108)(25,43,138,93,37)(26,94,44,38,139)(27,39,95,140,45)(28,141,40,46,96)(29,47,142,89,33)(30,90,48,34,143)(31,35,91,144,41)(32,137,36,42,92)(65,99,156,133,77)(66,134,100,78,157)(67,79,135,158,101)(68,159,80,102,136)(69,103,160,129,73)(70,130,104,74,153)(71,75,131,154,97)(72,155,76,98,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,104)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,144)(18,137)(19,138)(20,139)(21,140)(22,141)(23,142)(24,143)(33,108)(34,109)(35,110)(36,111)(37,112)(38,105)(39,106)(40,107)(41,125)(42,126)(43,127)(44,128)(45,121)(46,122)(47,123)(48,124)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77)(57,136)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,145)(81,159)(82,160)(83,153)(84,154)(85,155)(86,156)(87,157)(88,158)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,113), (1,48)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,70)(10,71)(11,72)(12,65)(13,66)(14,67)(15,68)(16,69)(17,154)(18,155)(19,156)(20,157)(21,158)(22,159)(23,160)(24,153)(25,146)(26,147)(27,148)(28,149)(29,150)(30,151)(31,152)(32,145)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(57,96)(58,89)(59,90)(60,91)(61,92)(62,93)(63,94)(64,95)(73,108)(74,109)(75,110)(76,111)(77,112)(78,105)(79,106)(80,107)(81,141)(82,142)(83,143)(84,144)(85,137)(86,138)(87,139)(88,140)(97,125)(98,126)(99,127)(100,128)(101,121)(102,122)(103,123)(104,124)(113,136)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135), (1,53,83,151,59)(2,152,54,60,84)(3,61,145,85,55)(4,86,62,56,146)(5,49,87,147,63)(6,148,50,64,88)(7,57,149,81,51)(8,82,58,52,150)(9,115,124,109,24)(10,110,116,17,125)(11,18,111,126,117)(12,127,19,118,112)(13,119,128,105,20)(14,106,120,21,121)(15,22,107,122,113)(16,123,23,114,108)(25,43,138,93,37)(26,94,44,38,139)(27,39,95,140,45)(28,141,40,46,96)(29,47,142,89,33)(30,90,48,34,143)(31,35,91,144,41)(32,137,36,42,92)(65,99,156,133,77)(66,134,100,78,157)(67,79,135,158,101)(68,159,80,102,136)(69,103,160,129,73)(70,130,104,74,153)(71,75,131,154,97)(72,155,76,98,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,104),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29),(17,144),(18,137),(19,138),(20,139),(21,140),(22,141),(23,142),(24,143),(33,108),(34,109),(35,110),(36,111),(37,112),(38,105),(39,106),(40,107),(41,125),(42,126),(43,127),(44,128),(45,121),(46,122),(47,123),(48,124),(49,78),(50,79),(51,80),(52,73),(53,74),(54,75),(55,76),(56,77),(57,136),(58,129),(59,130),(60,131),(61,132),(62,133),(63,134),(64,135),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,145),(81,159),(82,160),(83,153),(84,154),(85,155),(86,156),(87,157),(88,158),(89,114),(90,115),(91,116),(92,117),(93,118),(94,119),(95,120),(96,113)], [(1,48),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,70),(10,71),(11,72),(12,65),(13,66),(14,67),(15,68),(16,69),(17,154),(18,155),(19,156),(20,157),(21,158),(22,159),(23,160),(24,153),(25,146),(26,147),(27,148),(28,149),(29,150),(30,151),(31,152),(32,145),(33,52),(34,53),(35,54),(36,55),(37,56),(38,49),(39,50),(40,51),(57,96),(58,89),(59,90),(60,91),(61,92),(62,93),(63,94),(64,95),(73,108),(74,109),(75,110),(76,111),(77,112),(78,105),(79,106),(80,107),(81,141),(82,142),(83,143),(84,144),(85,137),(86,138),(87,139),(88,140),(97,125),(98,126),(99,127),(100,128),(101,121),(102,122),(103,123),(104,124),(113,136),(114,129),(115,130),(116,131),(117,132),(118,133),(119,134),(120,135)], [(1,53,83,151,59),(2,152,54,60,84),(3,61,145,85,55),(4,86,62,56,146),(5,49,87,147,63),(6,148,50,64,88),(7,57,149,81,51),(8,82,58,52,150),(9,115,124,109,24),(10,110,116,17,125),(11,18,111,126,117),(12,127,19,118,112),(13,119,128,105,20),(14,106,120,21,121),(15,22,107,122,113),(16,123,23,114,108),(25,43,138,93,37),(26,94,44,38,139),(27,39,95,140,45),(28,141,40,46,96),(29,47,142,89,33),(30,90,48,34,143),(31,35,91,144,41),(32,137,36,42,92),(65,99,156,133,77),(66,134,100,78,157),(67,79,135,158,101),(68,159,80,102,136),(69,103,160,129,73),(70,130,104,74,153),(71,75,131,154,97),(72,155,76,98,132)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
C22×C5⋊C8 is a maximal subgroup of
C10.(C4⋊C8) Dic5.C42 C5⋊C8⋊8D4 C5⋊C8⋊D4 C20⋊C8⋊C2 C5⋊C8⋊7D4 (C2×D4).7F5
C22×C5⋊C8 is a maximal quotient of Dic5.12M4(2) C5⋊C16.C22
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 5 | 8A | ··· | 8P | 10A | ··· | 10G |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | ··· | 10 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 4 | 5 | ··· | 5 | 4 | ··· | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 |
type | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C4 | C4 | C8 | F5 | C5⋊C8 | C2×F5 |
kernel | C22×C5⋊C8 | C2×C5⋊C8 | C22×Dic5 | C2×Dic5 | C22×C10 | C2×C10 | C23 | C22 | C22 |
# reps | 1 | 6 | 1 | 6 | 2 | 16 | 1 | 4 | 3 |
Matrix representation of C22×C5⋊C8 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 24 | 6 | 39 |
0 | 0 | 36 | 22 | 30 | 28 |
0 | 0 | 19 | 11 | 13 | 34 |
0 | 0 | 2 | 17 | 11 | 17 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,36,19,2,0,0,24,22,11,17,0,0,6,30,13,11,0,0,39,28,34,17] >;
C22×C5⋊C8 in GAP, Magma, Sage, TeX
C_2^2\times C_5\rtimes C_8
% in TeX
G:=Group("C2^2xC5:C8");
// GroupNames label
G:=SmallGroup(160,210);
// by ID
G=gap.SmallGroup(160,210);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,69,2309,599]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^5=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations